Nùmer sublìm

Da Wikipedia.
C'l artìcul chè 'l è scrit in Carpśàn Emiliàn

In dla teorìa di nùmer, un nùmer sublìm 'l è 'n nùmer naturêl () ch'al gh'à al nùmer di diviśōr e la sòma di diviśōr stès ch'egl'ìn tùt dū di nùmer perfèt.[1]

Eśèimpi

  • 12 'l è 'n nùmer sublìm. In di fat,
    • i só diviśōr (1, 2, 3, 4, 6 et 12) egl'ìn in dla quantitê ed 6, ch'l è 'n nùmer perfèt;
    • la sòma ed chi diviśōr chè, 28, 'l è incòr un nùmer perfèt.
  • A s cgnùs sól dū nùmer sublìm[2][3]: 12 e (2126)(261 − 1)(231 − 1)(219 − 1)(27 − 1)(25 − 1)(23 − 1). Al secònd al gh'à 76 cìffri:
6 086 555 670 238 378 989 670 371 734 243 169 622 657 830 773 351 885 970 528 324 860 512 791 691 264.

Noti e referèinsi

  1. (EN) 'N artìcol in MathPages in sìm'ai "Nùmer sublìm"
  2. (EN) Sequèinsa OEIS A081357 edl OEIS
  3. (EN) Clifford A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning New York: Oxford University Press (2003), pàg. 215